

Latest features of dpkg-dev

By Raphaël Hertzog
<hertzog@debian.org>

Mini-Debconf Paris
30-31 Oct 2010

Université Paris 7

mailto:hertzog@debian.org

What I'm going to cover

● New features of dpkg-dev in the last 2-3 years

● dpkg-dev: tools used to build debian packages

● In particular:

● Support of symbols files by dpkg-shlibdeps,
dpkg-gensymbols

● Support of new source formats by dpkg-source
● Supplementary options for dpkg-source
● Cross distribution collaboration with dpkg-vendor
● Custom compilation flags with dpkg-buildflags
● Miscellaneous improvements to other tools

Support of symbols files

● Before: shlibs files: library used →
dependency with minimal version

● Now: symbols files:
● Library used → dependency template
● Symbol used → minimal version for dependency

● dpkg-shlibdeps can thus generate more
accurate dependencies with relaxed
requirements in many cases

● dpkg-gensymbols needed to generate the
symbols files

Example of shlibs/symbols files

Shlibs file:

libc 6 libc6 (>= 2.11)

Symbols file:

libc.so.6 libc6 #MINVER#
| libc6 (>> 2.11), libc6 (<< 2.12)
 abs@GLIBC_2.0 2.0
 accept4@GLIBC_2.10 2.10
 duplocale@GLIBC_2.3 2.3
 errno@GLIBC_PRIVATE 0 1
[...]

More symbols goodness

● Ensuring generated dependency is as strong
as the corresponding build-dependency

● Example:
libgtk-x11-2.0.so.0 libgtk2.0-0 #MINVER#
* Build-Depends-Package: libgtk2.0-dev
 gtk_about_dialog_get_artists@Base 2.8.0
[...]

● If a package build-depends on libgtk2.0-dev
(>> 2.12), the dependency on libgtk2.0-0 will
be at least as strict (i.e. >> 2.12).

Adding symbols files in
a source package

● You provide: debian/<package>.symbols
● dpkg-gensymbols process this file to

generate the final symbols file
● Add missing symbols

● Dependency info from symbol patterns
● Otherwise assumed to be new in this release

● Fail if symbols/libraries got removed
● Filter the set of symbols to include based on tags

● You must still keep the source file up to date
(analyzing build logs is often enough)

Tags in debian/*.symbols files

● Dealing with arch-specific symbols
 (arch=i386 amd64)mysym@Base 1.0

● Marking private symbols which can disappear
 (optional)__internal_func@Base 1.0

● Matching symbols from the symbol version
 (symver)GLIBC_2.7 2.7

● Matching C++ symbols from demangled names
 (c++)"non-virtual thunk to
NSB::ClassD::~ClassD()@Base" 1.0

● Matching symbols with a regular expression
 (regex)"^mystack_.*@Base$" 1.0

● Combining tags with “|”
 (regex|optional)^__internal 1.0

New formats for source packages

● Historical format: “1.0” (native + non-native)
● New formats accepted in the Debian archive

● 3.0 (native) → like 1.0 native + default file ignore
● 3.0 (quilt) → replacement for 1.0 non-native

● New experimental formats
● 3.0 (git)
● 3.0 (bzr)

● You tell dpkg-source what you want
mkdir -p debian/source
echo "3.0 (quilt)" > debian/source/format

“1.0” vs “3.0 (quilt)”

● 1.0
● Packaging files:

● in .diff.gz
● Changes to

upstream files:
● Applied all at once

by the .diff.gz during
unpack

● Applied by a custom
patch management
system (dpatch,
quilt, …) during build

● 3.0 (quilt)
● Packaging files:

● in .debian.tar.*
● Changes to

upstream files:
● Stored separately in

debian/patches/
● Applied during

unpack

Features of 3.0 (quilt)
(that 1.0 doesn't have)

● Supports bzip2, xz, lzma
● Multiple upstream

tarballs (.orig-<comp>.tar.*)

● Supports adding binary
files (e.g. icons)

● Drops “debian” directory
from upstream tarball

● Changes to upstream
files → a dedicated patch
in debian/patches/

Basics of quilt patch system

● debian/patches/series: (ordered) list of
patches to apply

● Adding a patch
● quilt add name-of-patch
● quilt edit upstream-file-to-modify
● quilt refresh

● Updating fuzzy patches for a new upstream
version
● quilt pop -a
● while quilt push; do quilt refresh; done

Passing options to dpkg-source

● Command-line options can be made sticky
● In the source package:

debian/source/options
● In the VCS repository only:

debian/source/local-options
● Syntax: command-line options without

leading “--”, supplementary spaces allowed

● Example:
compression = "bzip2"
single-debian-patch

dpkg-source options
for “3.0 (quilt)”

● --single-debian-patch: store changes in
d/p/debian-changes instead of d/p/debian-
changes-<version>
● Useful only if you have a VCS-based workflow

that doesn't allow you to generate a proper patch
series, debian/source/patch-header should
explain how changes can be reviewed

● --unapply-patches: after the build
● When you build from a VCS and want the tree to

be clean after build

● --create-empty-orig: bundle multiple software.

Other useful dpkg-source options

● --compression=bzip2
● --compression-level=9
● --extend-diff-ignore=”(^|/)config.(sub|guess)$”

● Ignore changes on some files when
generating .diff.gz or d/p/debian-changes-<ver>

● --tar-ignore=unwanted-file
● Do not include some files in native packages

● --abort-on-upstream-changes
● Fail if upstream changes are not managed by an

existing patch

Cross-distribution collaboration
with dpkg-vendor

● Current vendor identified by
/etc/dpkg/origins/default (→ debian/ubuntu)

● dpkg-vendor queries those files
● You can use dpkg-vendor in debian/rules to

adjust the behavior during build
ifeq ($(shell dpkg-vendor --derives-from Ubuntu && echo yes),yes)
 SUBSTVARS = -Vdist:Depends="foo (>= 2)"
else
 SUBSTVARS = -Vdist:Depends="bar"
endif

%:
dh $@

override_dh_gencontrol:
dh_gencontrol -- $(SUBSTVARS)

dpkg-vendor interface

$ dpkg-vendor --is debian \
 && echo yes || echo no
yes

$ dpkg-vendor --derives-from ubuntu \
 && echo yes || echo no
no

$ dpkg-vendor --query Vendor-URL
http://www.debian.org/

$ man dpkg-vendor # for more info

http://www.debian.org/

Vendor-specific patch series

● Feature specific to 3.0 (quilt)
● dpkg-source uses a single quilt series file but

tries in order:
● debian/patches/<vendor>.series
● debian/patches/series

● Debian should provide debian/source/series
● Derivatives can override it completely
● In general they should only extend it, and

maybe drop Debian-specific branding
patches

Customizing compilation flags
with dpkg-buildflags

● Why do we want that?
● Users who want to recompile for a 5% speed

benefit (Gentoo like)
● Changing default compilation flags at the

distribution level (hardening, minimal CPU
requirement changed, etc.)

● Experimenting with new compilation flags

● How can we achieve it?
● Packages need to inject flags returned by dpkg-

buildflags in their build system

dpkg-buildflags

● Flags supported
● CFLAGS
● CPPFLAGS
● CXXFLAGS //C++
● FFLAGS //Fortran
● LDFLAGS //Linker
● dpkg-buildflags --list

for more

● Values retrieved from
● default value
● /etc/dpkg/

buildflags.conf
● $HOME/.config/dpkg/

buildflags.conf
● $DEB_<flag>_SET
● $DEB_<flag>_APPEND

dpkg-buildflags --get CFLAGS
dpkg-buildflags --export

dpkg-maintscript-helper

● Manages tedious operations usually done in
maintainer scripts
● Removing an obsolete conffile
● Renaming a conffile

● Same snippet in all maintainer scripts.
● Example:
if dpkg-maintscript-helper supports \
 rm_conffile 2>/dev/null; then
 dpkg-maintscript-helper rm_conffile \
 /etc/foo/conf.d/bar 1.2-1 -- "$@"
fi

dpkg-shlibdeps

● Improved performance by caching data
● Generates lots of warnings that can be used

to improve the binaries / the build system
● --warnings=<mask> can be used to control the

warnings displayed

● Enhanced support of cross compilation
● Mimicks ld.so well enough that it's rarely

needed to give supplementary hints with
LD_LIBRARY_PATH

dpkg-gencontrol

● Warns about unused substitution variables
● Supports multiple substvars files
● Simplify dependencies

● a, a | b, a (>= 1) → a (>= 1)

● Fails on arch-specific dependencies if the
packages is arch: all

dpkg-buildpackage

● -F → full build (source + binaries)
● -Rmyrules → run myrules instead of

debian/rules
● --source-option=”--foo” → pass to dpkg-

source
● --changes-option=”--foo” → pass to dpkg-

genchanges
● -j → build in parallel, -jX → run X process in

parallel

dpkg-mergechangelogs

● Problem: conflict on debian/changelog when
merging the experimental branch of a
package into the unstable branch

● Solution: custom merge script that
understands how debian/changelog works

● Can be used with git (see manpage)
● Register the merge driver in .git/config or

~/.gitconfig
● Configure the repository to use that driver for

debian/change in .git/info/attributes or
.gitattributes

Questions ?
Grab the slides at:

http://raphaelhertzog.com/go/talk-2010-10-30

http://raphaelhertzog.com/go/talk-2010-10-30

Credits & License

● Content by Raphaël Hertzog
http://raphaelhertzog.com/go/talk-2010-10-30
License: GPL-2+

● OpenOffice.org template by Raphaël Hertzog
http://raphaelhertzog.com/go/ooo-template
License: GPL-2+

● Background image by Alexis Younes “ayo”
http://www.73lab.com
License: GPL-2+

http://raphaelhertzog.com/go/talk-2010-10-30
http://raphaelhertzog.com/go/ooo-template
http://www.73lab.com/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26

