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What I'm going to cover

● New features of dpkg-dev in the last 2-3 years

● dpkg-dev: tools used to build debian packages

● In particular:

● Support of symbols files by dpkg-shlibdeps, 
dpkg-gensymbols

● Support of new source formats by dpkg-source
● Supplementary options for dpkg-source
● Cross distribution collaboration with dpkg-vendor
● Custom compilation flags with dpkg-buildflags
● Miscellaneous improvements to other tools



  

Support of symbols files

● Before: shlibs files: library used → 
dependency with minimal version

● Now: symbols files:
● Library used → dependency template
● Symbol used → minimal version for dependency

● dpkg-shlibdeps can thus generate more 
accurate dependencies with relaxed 
requirements in many cases

● dpkg-gensymbols needed to generate the 
symbols files



  

Example of shlibs/symbols files

Shlibs file:

libc 6 libc6 (>= 2.11)

Symbols file:

libc.so.6 libc6 #MINVER#
| libc6 (>> 2.11), libc6 (<< 2.12)
 abs@GLIBC_2.0 2.0
 accept4@GLIBC_2.10 2.10
 duplocale@GLIBC_2.3 2.3
 errno@GLIBC_PRIVATE 0 1
[...]



  

More symbols goodness

● Ensuring generated dependency is as strong 
as the corresponding build-dependency

● Example:
libgtk-x11-2.0.so.0 libgtk2.0-0 #MINVER#
* Build-Depends-Package: libgtk2.0-dev
 gtk_about_dialog_get_artists@Base 2.8.0
[...]

● If a package build-depends on libgtk2.0-dev 
(>> 2.12), the dependency on libgtk2.0-0 will 
be at least as strict (i.e. >> 2.12).



  

Adding symbols files in
a source package

● You provide: debian/<package>.symbols
● dpkg-gensymbols process this file to 

generate the final symbols file
● Add missing symbols

● Dependency info from symbol patterns 
● Otherwise assumed to be new in this release

● Fail if symbols/libraries got removed
● Filter the set of symbols to include based on tags

● You must still keep the source file up to date 
(analyzing build logs is often enough)



  

Tags in debian/*.symbols files

● Dealing with arch-specific symbols
 (arch=i386 amd64)mysym@Base 1.0

● Marking private symbols which can disappear
 (optional)__internal_func@Base 1.0

● Matching symbols from the symbol version
 (symver)GLIBC_2.7 2.7

● Matching C++ symbols from demangled names
 (c++)"non-virtual thunk to 
NSB::ClassD::~ClassD()@Base" 1.0

● Matching symbols with a regular expression
 (regex)"^mystack_.*@Base$" 1.0

● Combining tags with “|”
 (regex|optional)^__internal 1.0

 



  

New formats for source packages

● Historical format: “1.0” (native + non-native)
● New formats accepted in the Debian archive

● 3.0 (native) → like 1.0 native + default file ignore
● 3.0 (quilt) → replacement for 1.0 non-native

● New experimental formats
● 3.0 (git)
● 3.0 (bzr)

● You tell dpkg-source what you want
mkdir -p debian/source
echo "3.0 (quilt)" > debian/source/format



  

“1.0” vs “3.0 (quilt)”

● 1.0
● Packaging files:

● in .diff.gz
● Changes to 

upstream files:
● Applied all at once  

by the .diff.gz during 
unpack

● Applied by a custom 
patch management 
system  (dpatch, 
quilt, …) during build

● 3.0 (quilt)
● Packaging files:

● in .debian.tar.*
● Changes to 

upstream files:
● Stored separately in 

debian/patches/
● Applied during 

unpack



  

Features of 3.0 (quilt)
(that 1.0 doesn't have)

● Supports bzip2, xz, lzma
● Multiple upstream 

tarballs (.orig-<comp>.tar.*)

● Supports adding binary 
files (e.g. icons)

● Drops “debian” directory 
from upstream tarball

● Changes to upstream 
files → a dedicated patch 
in debian/patches/



  

Basics of quilt patch system

● debian/patches/series: (ordered) list of 
patches to apply

● Adding a patch
● quilt add name-of-patch
● quilt edit upstream-file-to-modify
● quilt refresh

● Updating fuzzy patches for a new upstream 
version
● quilt pop -a
● while quilt push; do quilt refresh; done



  

Passing options to dpkg-source

● Command-line options can be made sticky
● In the source package: 

debian/source/options
● In the VCS repository only: 

debian/source/local-options
● Syntax: command-line options without 

leading “--”, supplementary spaces allowed

● Example:
compression = "bzip2"
single-debian-patch



  

dpkg-source options
for “3.0 (quilt)”

● --single-debian-patch: store changes in 
d/p/debian-changes instead of d/p/debian-
changes-<version>
● Useful only if you have a VCS-based workflow 

that doesn't allow you to generate a proper patch 
series, debian/source/patch-header should 
explain how changes can be reviewed

● --unapply-patches: after the build
● When you build from a VCS and want the tree to 

be clean after build

● --create-empty-orig: bundle multiple software.



  

Other useful dpkg-source options

● --compression=bzip2
● --compression-level=9
● --extend-diff-ignore=”(^|/)config.(sub|guess)$”

● Ignore changes on some files when 
generating .diff.gz or d/p/debian-changes-<ver>

● --tar-ignore=unwanted-file
● Do not include some files in native packages

● --abort-on-upstream-changes
● Fail if upstream changes are not managed by an 

existing patch



  

Cross-distribution collaboration
with dpkg-vendor

● Current vendor identified by 
/etc/dpkg/origins/default (→ debian/ubuntu)

● dpkg-vendor queries those files
● You can use dpkg-vendor in debian/rules to 

adjust the behavior during build
ifeq ($(shell dpkg-vendor --derives-from Ubuntu && echo yes),yes)
        SUBSTVARS = -Vdist:Depends="foo (>= 2)"
else
        SUBSTVARS = -Vdist:Depends="bar"
endif

%:
dh $@

override_dh_gencontrol:
dh_gencontrol -- $(SUBSTVARS)



  

dpkg-vendor interface

$ dpkg-vendor --is debian \
  && echo yes || echo no
yes

$ dpkg-vendor --derives-from ubuntu \
  && echo yes || echo no
no

$ dpkg-vendor --query Vendor-URL
http://www.debian.org/

$ man dpkg-vendor # for more info

http://www.debian.org/


  

Vendor-specific patch series 

● Feature specific to 3.0 (quilt)
● dpkg-source uses a single quilt series file but 

tries in order:
● debian/patches/<vendor>.series
● debian/patches/series

● Debian should provide debian/source/series
● Derivatives can override it completely
● In general they should only extend it, and 

maybe drop Debian-specific branding 
patches



  

Customizing compilation flags
with dpkg-buildflags

● Why do we want that?
● Users who want to recompile for a 5% speed 

benefit (Gentoo like)
● Changing default compilation flags at the 

distribution level (hardening, minimal CPU 
requirement changed, etc.)

● Experimenting with new compilation flags

● How can we achieve it?
● Packages need to inject flags returned by dpkg-

buildflags in their build system



  

dpkg-buildflags

● Flags supported
● CFLAGS
● CPPFLAGS
● CXXFLAGS //C++
● FFLAGS //Fortran
● LDFLAGS //Linker
● dpkg-buildflags --list 

for more

● Values retrieved from
● default value
● /etc/dpkg/ 

buildflags.conf
● $HOME/.config/dpkg/

buildflags.conf
● $DEB_<flag>_SET
● $DEB_<flag>_APPEND

dpkg-buildflags --get CFLAGS
dpkg-buildflags --export



  

dpkg-maintscript-helper

● Manages tedious operations usually done in 
maintainer scripts
● Removing an obsolete conffile
● Renaming a conffile

● Same snippet in all maintainer scripts.
● Example:
if dpkg-maintscript-helper supports \
   rm_conffile 2>/dev/null; then
        dpkg-maintscript-helper rm_conffile \
          /etc/foo/conf.d/bar 1.2-1 -- "$@"
fi



  

dpkg-shlibdeps

● Improved performance by caching data
● Generates lots of warnings that can be used 

to improve the binaries / the build system
● --warnings=<mask> can be used to control the 

warnings displayed

● Enhanced support of cross compilation
● Mimicks ld.so well enough that it's rarely 

needed to give supplementary hints with 
LD_LIBRARY_PATH



  

dpkg-gencontrol

● Warns about unused substitution variables
● Supports multiple substvars files
● Simplify dependencies

● a, a | b, a (>= 1) → a (>= 1)

● Fails on arch-specific dependencies if the 
packages is arch: all



  

dpkg-buildpackage

● -F → full build (source + binaries)
● -Rmyrules → run myrules instead of 

debian/rules
● --source-option=”--foo” → pass to dpkg-

source
● --changes-option=”--foo” → pass to dpkg-

genchanges
● -j → build in parallel, -jX → run X process in 

parallel



  

dpkg-mergechangelogs

● Problem: conflict on debian/changelog when 
merging the experimental branch of a 
package into the unstable branch

● Solution: custom merge script that 
understands how debian/changelog works

● Can be used with git (see manpage)
● Register the merge driver in .git/config or 

~/.gitconfig
● Configure the repository to use that driver for 

debian/change in .git/info/attributes or 
.gitattributes



  

Questions ?
Grab the slides at:

http://raphaelhertzog.com/go/talk-2010-10-30

http://raphaelhertzog.com/go/talk-2010-10-30
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http://raphaelhertzog.com/go/talk-2010-10-30
License: GPL-2+

● OpenOffice.org template by Raphaël Hertzog
http://raphaelhertzog.com/go/ooo-template
License: GPL-2+
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